A Neutron Diffraction Study of SrF₂ and CaF₂

BY M. J. COOPER AND K. D. ROUSE

Materials Physics Division, A.E.R.E. Harwell, Berkshire, England

(Received 11 March 1971)

Accurate integrated intensities for the Bragg reflexion of neutrons by crystals of SrF₂ and CaF₂, both of which have the cubic fluorite structure, have been measured at room temperature. Measurements were made at three different wavelengths in each case, in order to investigate the effects of extinction, which were found to be quite large, and corrections were made for both extinction and thermal diffuse scattering. The experimental data show significant contributions from a third order anharmonic term in the one particle potential of the fluorine atoms in both cases. This term is consistent with the tetrahedral symmetry of the fluorine atom site and its magnitude was found to be similar to that observed previously for the isostructural BaF₂. Thermal parameters for the three fluorides show that the relative mean-square vibration amplitude of the cations is essentially the same in all three but that for the fluorine ion it increases linearly with the atomic number of the cation neighbour. The ratio of the nuclear scattering amplitude of strontium of $b_{\rm Sr}=0.688 (\pm 0.013) \times 10^{-12}$ cm, assuming $b_{\rm F}=0.560 (\pm 0.010) \times 10^{-12}$ cm.

Introduction

In an earlier paper (Cooper, Rouse & Willis, 1968) we described a series of accurate integrated intensity measurements for the Bragg reflexion of neutrons from BaF_2 at a number of temperatures in the range 20 to 600 °C. The experimental data could only be analysed satisfactorily by considering an anharmonic component in the thermal vibration of the fluorine ions, as allowed by their non-centrosymmetric site symmetry. Similar measurements have since been made at room temperature for crystals of CaF₂ and SrF₂, which also have the fluorite structure, in order to study the thermal vibrations in these and to allow a comparison to be made of the thermal parameters with those obtained previously for BaF₂.

Considerable care was exercised in these measurements in order to achieve data which were considered to be reliable to the required level of accuracy. The appropriate experimental techniques and the sources of systematic error which need to be considered in this type of work have been discussed elsewhere (Cooper & Rouse, 1970a). In particular it was found that extinction was quite severe in the crystals studied and a detailed analysis of the data showed that existing theories of extinction were inadequate. Extensive measurements were therefore made at three different wavelengths in each case and the Zachariasen (1967) theory of extinction was extended by the authors. The consideration of extinction effects in the crystals has been discussed in an earlier paper (Cooper & Rouse, 1970b) and in the present paper we shall be concerned mainly with the analysis of the data in terms of the thermal vibrations of the atoms.

Theory

Anharmonic thermal vibration in fluorite structures has been considered by Dawson, Hurley & Maslen (1967) and the relevant theory was summarized in the paper describing the BaF_2 study (Cooper, Rouse & Willis, 1968).

The vibration of each atom j in this structure is assumed to be governed by an effective one-particle potential $V_i(\mathbf{r})$ of the form:

$$V_{j}(\mathbf{r}) = V_{0j} + \frac{1}{2}\alpha_{j}(x^{2} + y^{2} + z^{2}) + \beta_{j}(xyz)$$
(1)

with $\beta = 0$ except for the fluorine atoms.

x, y and z are the coordinates defining the instantaneous displacement **r** of the *j*th atom, the term in $x^2+y^2+z^2$ is the normal harmonic potential with α_j being related to the mean-square displacement of the atom and the third order term has been chosen to conform with the tetrahedral ($\overline{4}3m$) site symmetry of the fluorine atoms. No third order term is possible for the centrosymmetric (m3m) cation site. The present measurements gave no significant indication of the presence of anisotropic higher order terms in the potential and we shall therefore not consider these here.

For the fluorite structure the reflexions can be divided into three groups depending on the sum of the indices h, k and l. The calculated structure factors for these groups, assuming a potential of the form given in equation (1), are similar to those given previously for BaF₂ [equations (5) of Cooper, Rouse & Willis, 1968], with Ba replaced by Sr or Ca.

The most significant effect on the Bragg reflexions of introducing the anharmonicity parameter β_F is to introduce an additional term in the structure factor for reflexions with $h+k+l=4n\pm 1$. This additional term is proportional to $b_F\beta_F$ and to the index product $h \times k \times l$. It is positive for 4n+1 reflexions and negative for 4n-1 reflexions.

Experimental measurements

The samples used were a spherical single crystal of SrF_2 of radius 1.5 mm, a cylindrical single crystal of

SrF₂ of radius 1.5 mm and length 8 mm, and a cylindrical single crystal of CaF₂ of radius 1.5 mm and length 9 mm. In both cases the axis of the cylinder was parallel to a crystallographic $\langle 110 \rangle$ axis. Two dimensional *hkk* intensity measurements were made with a Hilger and Watts Mk II automatic neutron diffractometer and in all cases intensities were averaged over a complete two-dimensional set of equivalent reflexions (*hkk*, *hkk*, *hkk* and *hkk*).

Reflexions were scanned in a θ -2 θ mode using a rectangular detector aperture which was adjusted to reduce the amount of background scattering detected without any loss of Bragg intensity. A number of measurements were repeated with two different aperture widths in order to investigate the dependence of the observed intensity on this. A minimum scan range of $\pm 1.0^{\circ}$ was used throughout, but for the higher-angle reflexions the scan range was increased in order to avoid any possible loss of Bragg intensity.

Measurements were made initially using the sphere of SrF_2 and the cylinder of CaF_2 and the background was measured by making a similar scan with the crystal

Table 1. Neutron diffraction data for SrF_2 sphere at $\lambda = 0.746$ Å

h	k	1	I ₀	°	۹(I ⁰)	У	ď
0 2 0 2 0 4 4 0 2 0 4 4 0 2 0 4 4 0 2 0 4 4 0 2 0 4 8 0 2 0 4 8 0 4 0 4 8 0 8 2 4 12 4 8 10 10	202440266	2024402664	59172 (53454) 44805 (43153) (36188) (31199) 27704 (34436) 24277	59488 50466 44992 40966 35034 30336 28313 28313 24763	252 240 221 217 200 188 179 198 169	0.259 0.331 0.384 0.429 0.508 0.571 0.599 0.599 0.647	0.002 0.005 0.009 0.013 0.023 0.034 0.040 0.040 0.040
	4 8 0 8 2 4 8 10 6 10	4 8 6 0 8 2 4 8 10 6 10	(19422) 17065 (22137) 16513 15309 14344 (14905) (15822) (18312)	- 18330 17286 16369 15566 13845 13189 13116 13689	160 153 172 155 153 156 113 166 178	0.741 0.752 0.761 0.761 0.772 0.801 0.813 0.816 0.814	0.084 0.091 0.099 0.099 0.106 0.127 0.139 0.147 0.159
1315357137599173	1131331553513757	1131331553513757	31776 19970 15438 (18039) 9284 9160 8834 8373 7518 (7905) 6461 (6684) 5206 5862 5367	30404 19367 15258 12886 1304 1 9817 9015 8904 8400 7650 6651 6341 5357 5422 5886 5459	138 110 97 145 112 78 77 104 106 99 101 94 97 95	0.535 0.683 0.744 0.779 0.834 0.849 0.851 0.860 0.873 0.891 0.891 0.995 0.912 0.905 0.912	0.000 0.003 0.006 0.010 0.020 0.025 0.025 0.030 0.036 0.042 0.048 0.060 0.060 0.066
2 2 6 2 6 6 2 10 10 6	0204246026	0 2 0 4 2 4 6 0 2 6	14671 (10230) (13674) 3119 3285 (1537) (1537) (2158) 776 (4684)	14 127 8021 3339 2654 1403 1143 618 502 502	100 118 93 33 37 69 71 77 40 54	0.765 0.861 0.941 0.953 0.976 0.980 0.990 0.992 0.992	0.001 0.003 0.016 0.020 0.037 0.042 0.060 0.066 0.066

Table 2. Neutron diffraction data for SrF_2 cylinder at $\lambda = 0.746$ Å

h	k	1	I	I	σ(I_)	У	ď
~	•	•	59004	50547	000	0.070	0.007
4	2	2	50004	51301	290	0.2/0	0.005
4	2	2	17/07	46306	237	0.112	0.000
õ	Ā	4	41421	42461	210	0.464	0.015
Ă	Ā	Ă	36080	36351	180	0.550	0.025
8	ò	ò	30394	31454	152	0.619	0.036
8	2	2	28784	29321	144	0.649	0.041
0	6	6	29420	29321	147	0.649	0.041
4	6	6	24709	25512	124	0.700	0.052
8	4	4	23317	23828	117	0.722	0.057
0	8	8	18037	18579	90	0.790	0.084
8	6	6	17 134	17526	86	0.804	0.089
12	0	0	17362	16715	87	0.817	0.101
4	8	8	16402	16715	82	0.817	0.101
12	2	2	15871	15848	79	0.827	0.105
12	4	4	14062	13929	71	0.850	0.125
8	8	8	12928	13139	126	0.861	0.129
10	10	10	13022	13058	75	0.863	0.138
12	10	10	12/20	12479	87	0.858	0.141
4	10	10	15172	12479	11	0.000	0.141
1	1	1	33017	31627	165	0.581	0.001
3	1	1	20382	20139	102	0.741	0.004
1	3	3	15785	15734	79	0.800	0.008
5	1	1	13254	13190	66	0.834	0.012
3	3	3	14002	13355	73	0.832	0.012
5	3	3	9807	9906	55	0.877	0.022
7	1	1	9254	9051	52	0.889	0.027
1	5	5	8985	8936	52	0.891	0.027
3	5	5	8511	8404	51	0.090	0.072
7	3	3	7636	1022	49	0.900	0.030
5	5	5	6560	6490	20	0.925	0.049
2	1	7	5591	5256	42	0.938	0.059
9	2	2	5374	5322	40	0.937	0.059
7	5	5	5747	5788	43	0.932	0.059
5	7	ź	5192	5349	43	0.937	0.064

mis-set by 2°. However, certain anomalies were observed in the background scattering from the SrF_2 sphere at the shortest wavelength and further measurements were therefore made using the SrF_2 cylinder at this wavelength. Anomalies in the background were again observed. These took the form of an additional background scattering along a radial $(\theta - 2\theta)$ direction through certain reciprocal lattice points. The extra intensity was essentially independent of angle and in order to eliminate the effect on the apparent Bragg intensities a conventional type of background measurement was made at the extremities of the scan through the Bragg reflexion. Similar, but smaller, anomalies were observed at the longer wavelengths but the effect of these could, in most cases, be ignored. However, the magnitude of the effect at short wavelengths emphasizes the care which needs to be exercised over the background measurements if the diffuse scattering in the vicinity of the Bragg peaks is significantly anisotropic.

Data analysis

(a) Method of analysis

The sets of observed data were analysed using the Harwell *TAILS* computer program, which was developed originally for the analysis of data involving effects due to anharmonic thermal vibrations and requiring possible corrections for extinction and thermal diffuse scattering. The program determines the values of the varied parameters which minimize the quantity *S*,

given by

$$S = \sum_{i} [w_{i}(I_{oi} - I_{ci})]^{2}$$
(2)

where I_{oi} is the observed background-corrected intensity of the *i*th reflexion, I_{ci} is the corresponding computed quantity and w_i is the weight given to the observation.

It should be noted that for spherical or cylindrical crystals no corrections, apart from the subtraction of the normal background, are made to the observed intensities; corrections for all systematic effects are made to the computed intensities. Minimization of S is effected by the search algorithm of Powell (1965), implemented in the subroutine VAO2A of the Harwell subroutine library. This algorithm does not necessitate the computation of partial derivatives.

Provision is made for including corrections for the effects of absorption, extinction and thermal diffuse scattering, the calculated intensity being given by

Table	3.	Neutron	diffraction	data	for	SrF_2	sphere	at
			$\lambda = 0.86$	5 Å				

h	k	1	I _o	I _c	σ(I ₀)	У	a.
04404880480812412	202440266486082	2 0 2 4 4 0 2 6 6 4 8 6 0 8 2	221818 196238 175756 160841 145686 129974 121490 123547 111749 109408 98922 96026 96140 96813 98739	22 1921 1935 16 176872 164991 146420 131438 125023 113963 109034 95524 94408 94529 94529 94529 97110	337 318 302 288 274 260 251 254 342 340 232 229 188 189 236	0.208 0.263 0.310 0.352 0.483 0.509 0.509 0.509 0.556 0.573 0.623 0.632 0.638 0.638 0.638	0.002 0.005 0.009 0.013 0.023 0.039 0.039 0.050 0.058 0.085 0.085 0.096 0.096 0.096
1315357137599173159171313	1 1 3 1 3 3 1 5 5 3 5 1 3 7 5 7 1 7 5 3 7 9 1 5 9	1 1 3 1 3 3 1 5 5 3 5 1 3 7 5 7 1 7 5 3 7 9 1 5 9	122859 83053 67226 57531 59130 40443 41014 39192 35816 32901 30619 27608 27116 29198 27462 25872 21127 23755 25317 29559 29087 37344 39812 40137	120407 80861 65546 57284 44840 417273 39470 36546 31947 31947 31947 31947 31947 31947 31947 31947 30237 28670 25853 23628 23507 26268 23507 26268 23507 262893 29130 365946 39836 398471	248 151 140 142 119 120 144 113 105 127 126 129 127 126 100 105 127 115 115 165 165	0.445 0.594 0.662 0.703 0.707 0.789 0.800 0.819 0.839 0.844 0.861 0.849 0.854 0.854 0.854 0.854 0.854 0.854 0.854 0.854 0.854 0.860 0.860 0.860 0.860 0.860 0.860 0.862 0.831 0.822	0.000 0.003 0.006 0.010 0.020 0.025 0.030 0.036 0.047 0.060 0.060 0.060 0.060 0.060 0.060 0.061 0.081 0.010 0.081 0.010 0.081 0.081 0.010 0.081 0.010 0.081 0.010 0.081 0.010 0.010 0.081 0.010 0.010 0.010 0.081 0.010 0.010 0.010 0.010 0.010 0.081 0.0100 0.0100 0.0100 0.0100000000
2 2 6 2 6 6 2 0 10 6 0 2	020424602648	0 2 0 4 2 4 6 0 2 6 4 8	61583 36436 18404 15028 12185 6392 5418 (4094) 2623 (4635) 1348 1310	60583 35985 15893 12813 7068 5850 3355 2794 2794 1621 1621	124 96 71 66 60 42 37 40 35 40 27 27	0.688 0.913 0.913 0.930 0.962 0.969 0.982 0.985 0.985 0.991 0.991	0.001 0.003 0.016 0.020 0.036 0.042 0.061 0.068 0.068 0.088 0.088

Table 4	. Neutron	diffraction	data for	SrF_2	sphere	at
		$\lambda = 1.07$	7Å	-	-	

		-	_		<i>i</i> – 5		
h	k	1	I _o	I _c .	۹(I°)	У	æ
0	2	2	294 346	285272	388	0.145	0.002
4	0	0	266011	262515	369	0.195	0.006
4	2	2	2 40189	2522 65	351	0.238	0.010
0	4	4	226715	244029	342	0.274	0.015
4	4	4	217637	232111	334	0.335	0.025
8	0	0	204726	223945	325	0.380	0.037
õ	4	6	204 (0)	219/90	320	0.394	0.045
Ă	6	6	207072	227300	334	0.121	0.042
Ā	Ă	Ă	229563	24 1839	345	0.426	0.058
Ŭ		4	22//0/	2410))	747	01720	,.
1	1	1	164210	159773	184	0.334	0.001
3	1	1	121007	115253	176	0.473	0.003
1	3	3	101324	98078	144	0.543	0.007
5	1	1	90211	88180	125	0.592	0.012
2	2	2	92581	89046	127	0.588	0.012
27	2	2	71607	71735	112	0.050	0.022
1	5	5	71687	71005	112	0.678	0.027
3	5	5	70855	70400	112	0.687	0.034
7	3	3	68396	67383	110	0.694	0.039
5	5	5	64664	62024	118	0.713	0.045
9	1	1	66 193	64895	120	0.710	0.052
9	3	3	74 166	70260	116	0.702	0.059
1	7	7	74796	71003	117	0.700	0.059
7	5	2	79003	76186	119	0.686	0.059
2	1	1	97042	90240	140	0.05/	0.000
2	0	0	93359	88897	127	0.571	0.001
2	2	2	57688	56788	100	0.709	0.004
6	0	0	27321	28215	77	0.854	0.017
2	4	4	26297	28215	77	0.854	0.017
6	2	2	22146	23541	19	0.879	0.023
0	4	4	1207	12842	00 63	0.922	0.040
10	õ	0	10065	10199	63	0.947	0.059
10	2	2	1154 1	11307	70	0.942	0.065
6	6	6	11634	11307	70	0.942	0.065
-	•	-				/	

$$I_c = sA_{\mu}(y+\alpha)|F_c|^2 \operatorname{cosec} 2\theta \tag{3}$$

where s is the scale factor, A_{μ} is the absorption factor, y the extinction factor and α the thermal diffuse scattering factor.

The absorption factor for a spherical or cylindrical crystal is obtained by interpolation in stored tables of A_{μ} as a function of μR and $\sin^2 \theta$, where R is the radius of the crystal. Tables appropriate to neutron diffraction measurements have been published elsewhere (Rouse, Cooper, York & Chakera, 1970). For other shapes of crystals it is necessary to correct the observed intensities for absorption.

The extinction factor is that defined by the Zachariasen (1967) theory as modified by the authors [Cooper & Rouse, 1970b, equations (29), (34), (15) and (20d)].

The thermal diffuse scattering factor is calculated using the isotropic approximation of the authors (Cooper & Rouse, 1968) for first order scattering, but it should be noted that this approximation is not valid if the neutron velocity is appreciably less than that of the phonons concerned (see Cooper, 1971).

(b) Results

Absorption was sufficiently small in the crystals studied ($\mu R < 0.01$) for A_{μ} to be considered the same for all reflexions and this factor was therefore considered as part of the scaling factor. Thermal diffuse scattering corrections were calculated using the elastic constant values given by Gerlich (1964) for SrF_2 and by Huffman & Norwood (1960) for CaF_2 . No correction was applied for CaF_2 at 1.339 Å since at this wavelength the neutrons are faster than all sound velocities in the crystal.

The parameters which were considered as possible variable quantities were the scale factor, the scattering amplitude of the cation, the harmonic thermal parameters for each ion, the anharmonic thermal parameter for the fluorine ion and the effective domain radius. Of these, the following were considered to be well de-

Table 5. Neutron diffraction data for CaF_2 cylinder at $\lambda = 0.877$ Å

h	k	1	ı,	I _c	₀(I₀)	у	a.
0 4 4 0 4 8 8 0 4 8 0 8 8 0 8	2 0 2 4 4 0 2 6 6 4 8 6	2 0 2 4 4 0 2 6 6 4 8 6	32844 26498 23485 23853 20967 19952 18986 19938 19725 19234 23163 26205	27262 25480 24727 24245 23525 22798 22459 22459 22459 22124 22024 23567 25433	19 2 174 165 155 153 151 154 156 154 17 2 182	0.086 0.117 0.144 0.169 0.215 0.257 0.277 0.277 0.314 0.331 0.376 0.378	0.002 0.006 0.011 0.016 0.027 0.040 0.046 0.046 0.061 0.067 0.092 0.098
1 3 1 5 3 5	1 3 1 3 3	1 1 3 1 3 3	12896 8799 8456 6902 7502 5538 5936	12270 9504 8341 7597 7681 6459 6493	96 78 7 8 7 2 74 67 91	0.251 0.385 0.463 0.517 0.512 0.602 0.602	0.000 0.003 0.007 0.011 0.011 0.020 0.024
7	1	1	5800 5889	6202 624 1	69 9 2	0.624	0.026
1	5	5	6222 6224	6123 6161	93	0.628	0.020
3	5	5	6008 5895	6029 6072	70 90	0.639	0.031
7	3	3	5438 5444	5708 5754	70 63	0.662 0.662	0.037 0.042
5	5	5	5370	5035 5077	73 64	0.703 0.703	0.042 0.048
9	1	1	5130	5103	74	0.704	0.048
9	3	3	5042	4687	72 52	0.736	0.058
1	7	7	5009	4754	73	0.733	0.058
7	5	5	5 105 5460	4802 5228	64 74	0.755	0.058
3	7	7	545 2 5534	5282 5101	65 80	0.708 0.717	0.066
11		1	5546 5282	5161 4885	70 89	0.717 0.737	0.075 0.075
-	- 7	. 7	5302	4944	61 88	0.737	0.085 0.075
2	1	-	4698	4406	59	0.763	0.085
9	5	5	5587	4579	74	0.754	0.088
11	3	3	6876 6798	5756 5836	131 82	0.702	0.098
N N O N O O N	0 2 0 4 2 4 6	0 2 0 4 2 4 6	14826 12162 8549 8540 7380 6072 6153	14072 11272 8285 8285 7623 5986 5584	100 89 78 78 74 73 76	0.204 0.306 0.490 0.537 0.647 0.676	0.001 0.003 0.016 0.021 0.021 0.037 0.043
10	0	о	5985 5 2 96	5595 4532	95 72	0.745	0.059
10	2	2	4676 4829	4296 4344	78 54	0.759 0.759	0.067 0.076
6	6	6	5266	4296	80 55	0.759	0.067 0.076
10	4	4	4969	4011	82	0.782	0.079
2	8	8	4 / 50 4438 4650	4055 4011 4055	81 57	0.782	0.079

Fable	6.	Neutron	diffraction	data for	CaF ₂	cylinder	at
			$\lambda = 1.07$	78 Å			

h	k	1	1 ₀	I _c	₀(I₀)	У	æ
0 4 4 0 4 8 8 0 4	2024 402 66	2 0 2 4 4 0 2 6 6	26484 21710 19508 20070 18982 19311 20396 21276 26816	23102 21686 21151 20904 20663 21213 21766 21766 25543	30 28 26 27 22 32 26 47 53	0.119 0.161 0.197 0.229 0.283 0.328 0.328 0.344 0.344 0.362	0.002 0.006 0.010 0.015 0.025 0.036 0.041 0.041 0.048
131535713759	1 1 3 1 3 3 1 5 5 3 5 1	1 1 3 1 3 3 1 5 5 3 5 1	9825 6939 6770 5765 6102 5244 5368 5597 5817 5817 5820 6226	10269 7717 6618 5963 6042 5059 4929 4858 4940 4851 4487 4993	23 19 18 18 17 17 17 18 18 18 26	0.345 0.505 0.583 0.632 0.628 0.698 0.709 0.713 0.716 0.726 0.747 0.729	0.001 0.003 0.008 0.012 0.022 0.027 0.027 0.027 0.033 0.038 0.043 0.049
2 2 6 2 6 C 2	0 2 0 4 2 4 6	0 2 0 4 2 4 6	11876 9509 6966 7293 6607 6394 6653	11825 9381 6681 6681 6133 5139 5018	25 22 19 20 15 15 19	0.280 0.410 0.60J 0.600 0.638 0.711 0.721	0.001 0.004 0.017 0.017 0.022 0.039 0.043

termined already and therefore not needing to be refined: $b_{Ca} = 0.488 \times 10^{-12}$ cm (Atoji, 1961) and α_{Ca} and α_F for CaF₂ as given by $B_{Ca} = 0.507$ Å² and $B_F = 0.697$ Å² which were derived from the values given by Elcombe & Pryor (1970). The scattering amplitude of fluorine was taken to be $b_F = 0.56 \times 10^{-12}$ cm (Donaldson, 1964), but it should be noted that, since the scale factor is refined, only the ratio of the scattering amplitudes of the cation and the anion can be determined from the analysis.

Of the remaining parameters only the effective domain radius and the scale factor vary with the wavelength. However, the original version of the program does not permit joint refinement of data collected at different wavelengths and initial analysis was carried out treating the data for the various wavelengths separately. Good agreement was obtained for the values of the parameters which are independent of the wavelength and a weighted mean value was determined in each case. The analysis was then repeated with these parameters fixed at their weighted mean values, in the following order: (i) cation scattering amplitude, (ii) harmonic thermal parameters (iii) anharmonic thermal parameter. In order to determine the values of $\beta_{\rm F}$ most precisely analyses were made of the odd-index reflexions only, since only these are dependent on this parameter. The final analysis of all the data was carried out with only the effective domain radius and the scale factor as variable parameters.

Analyses including anisotropic fourth order thermal parameters for each ion gave consistent values of these, as appropriate to the site symmetries, but in no case were the effects large enough to be considered significant. h

0440

48804808242280

12 4

599173159171313

000000000000000

Table 7. Neutron diffraction data for CaF₂ cylinder at $\lambda = 1.339$ Å

h	k	1	ľ	I.c	σ(I ₀)	У	a.
0 4 4 0 4	2 0 2 4 4	2 0 2 4 4	50384 4 1854 37752 39324 49042	46591 44760 447 2 1 45399 50983	25 23 26 26 28	0,138 0,189 0,232 0,266 0,318	0 0 0 0
1 3 1 5 3 5 7 1 3	1 1 3 1 3 3 1 5 5	1 1 3 1 3 3 1 5 5	19731 13816 13562 12352 12572 12388 16127 16834 23600	19939 14824 12780 11691 11851 10817 11566 11404 13977	20 17 16 16 16 19 19 25	0.384 0.546 0.618 0.656 0.651 0.694 0.681 0.685 0.633	000000000000000000000000000000000000000
2 2 2 6 1 6	0 2 0 4 2	0 2 0 4 2	24475 18600 1546 1 16053 17580	23101 18288 13627 13627 13227	22 20 23 24 21	0.314 0.450 0.613 0.613 0.634	0 0 0 0

Discussion

The experimental data are summarized in Tables 1 to 4 for SrF_2 and Tables 5 to 7 for CaF_2 . These tables list the observed and calculated background-corrected intensities, the standard deviation of the observed intensity based on counting statistics, together with the values of the extinction and thermal diffuse scattering factors for each reflexion. Values given in brackets in Tables 1 and 3 include a significant contribution from the anomalous diffuse scattering and were therefore excluded from the analysis. The final values for the fundamental parameters are listed in Table 8 and the derived values of the structure factors are given in Table 9 for SrF_2 and Table 10 for CaF_2 . In order to give an indication of the overall agreement, the values of the conventional discrepancy index,

$$R = \sum ||F_o| - |F_c|| / \sum |F_o| , \qquad (4)$$

are listed for the various sets of data in Table 11.

Table 8. Final values of fundamental parameters for SrF_2 and CaF_2

	SrF_2	CaF_2	
bм	0.688 (0.013)	0.488	$\times 10^{-12}$ cm
αΜ	5.63 (0.11)	6.30	$\times 10^{-12}$ erg. Å ⁻²
αF	3.77 (0.06)	4.58	$\times 10^{-12}$ erg. Å ⁻²
$-p_F$	3.95 (0.46)	5.66 (1.16)	$\times 10^{-12}$ erg. Å ⁻³

It can be seen from Tables 9 and 10 that there is, in general, excellent agreement between the F_o values derived from the various sets of data, in spite of the magnitude of the extinction corrections involved (see the y values given in Tables 1 to 7). The good agreement between the two sets of F_o values obtained for SrF_2 at 0.746 Å, excluding those measurements affected by the anomalous diffuse scattering, is particularly striking, especially since the measurements were made on two crystals, one of which was a sphere and the other a cylinder, so that not only is the magnitude of

the extinction different in the two cases but the form of the correction formula is also different.

The measurements as a whole quite convincingly support the extensions made to the Zachariasen theory, which we have discussed elsewhere (Cooper & Rouse, 1970b), particularly the inclusion of the angular dependent function $f(\theta)$. Indeed, analysis using the original Zachariasen formulation gave R values which were larger by a factor of about 2 or 3 (see Cooper & Rouse, 1970b). Extinction was particularly severe for the calcium fluoride crystal and the final agreement obtained in that case is inferior to that obtained for the strontium fluoride data. However, there are still some systematic differences between the observed and calculated intensities of the strongest reflexions which indicate that an analytical expression for y may not be appropriate for a cylindrical crystal if the extinction is very severe. It should be noted, however, that the analytical functions considered are indistinguishable when the extinction is relatively small and that they only become unsatisfactory when the extinction is very large.

Table 9. Neutron structure factors for SrF_2

	0.7	46 X	0.865Å	1.0778	
k l	F ₁	F2	F3	FL	Fc
22 00 22 44 44	6.903 6.326	6.833 6.758 6.421 6.029 5.540	6.919 6.664 6.315 5.991 5.547	7.030 6.668 6.186 5.849 5.385	6.921 6.624 6.340 6.068 5.561
0 2 2 6 6 6 4 4	4.828 4.431	5.010 4.836 4.889 4.404 4.240	5.069 4.811 4.852 4.432 4.293	4.873 4.711 4.744 4.356 4.176	5•097 4•880 4•880 4•475 4•286
8 6 0 8 2 4 8 0 6 6 0 10	3.434 3.326 3.146 2.842	3.555. 3.417 3.375 3.280 3.175 2.805 2.544 2.455 2.282 2.282 2.233	3.671 3.486 3.339 3.351 3.199		3.608 3.456 3.311 3.311 3.173 2.792 2.565 2.458 2.259 2.259
1 1 3 1 3 3 1 5 5 3 5 1 3 7 5 7 1 7 5 3 7 9 1 5 9	2.777 2.670 2.550 2.482 2.210 2.24,1 2.178 2.085 1.954 1.954 1.759 1.873 1.789	2.776 2.645 2.559 2.559 2.551 2.224 2.224 2.213 2.195 1.963 1.963 1.963 1.932 1.8328 1.8324 1.871	2.744 2.665 2.567 2.472 2.511 2.158 2.214 2.158 2.214 2.000 2.174 2.082 1.982 1.982 1.982 1.982 1.768 1.643 1.476 1.525 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.552	2.754 2.694 2.494 2.576 2.481 2.280 2.283 2.221 2.218 2.188 2.119 1.994 1.994 1.995 1.832 1.842 1.832 1.842 1.871	$\begin{array}{c} 2,717\\ 2,629\\ 2,552\\ 2,453\\ 2,472\\ 2,272\\ 2,272\\ 2,272\\ 2,233\\ 1,936\\ 1,733\\ 1,953\\ 1,953\\ 1,955\\ 1,877\\ 1,804\\ 1,877\\ 1,804\\ 1,561\\ 1,574\\ 1,560\\ 1,574\\ 1,355\\ 1,405\\ 1,395\\ 1,$
020424602648	1.694 1.167 1.236 0.789		1.676 1.548 1.300 1.755 1.084 0.813 0.751 0.510 0.343 0.338	1.704 1.550 1.189 1.166 1.078 0.831 0.761 0.580 0.552 0.532	1.663 1.538 1.208 1.211 0.855 0.781 0.584 0.526 0.526 0.526 0.376

In the case of the strontium fluoride data there was no correlation between the extinction and any of the thermal parameters and the reliability of the values obtained for these parameters will therefore not be affected by the magnitude of the extinction. On the other hand, in the case of the calcium fluoride data some correlation was found to occur between the extinction and the harmonic thermal vibration parameter for the calcium atoms, α_{Ca} . Because of this correlation, values of the harmonic thermal vibration parameters for both ions were subsequently fixed at values calculated from the temperature factors listed by Elcombe & Pryor (1970), which were determined from phonon frequency measurements. The value of β_F was not affected by the extinction.

With the present measurements we have now completed a series of accurate neutron diffraction measurements at room temperature for the series of isostructural fluorides of calcium, strontium and barium. The neutron scattering amplitudes and thermal parameters which have been derived from these measurements are listed in Table 12, together with the ratios of $-\beta_F$ and α_M to α_F and the values of *B* and B/a^2 , where *a* is the unit-cell dimension. The quantities in brackets are the standard deviations of refined parameters or functions derived from refined parameters. The parameters for CaF₂ which have no tabulated standard deviation were not refined, but were held fixed at the given values for

Table 10. Neutron structure factors for CaF₂

		0.87	7 R	1.0788	1.339Å	
h	k l	F1	F2	F3	F4	Fc
044048804808	202440266486 202440266486		6.764 6.021 5.513 5.376 4.698 4.275 4.027 4.127 3.799 3.603 3.227 3.167	6.598 5.907 5.433 5.311 4.770 4.361 4.330 4.122	6.408 5.709 5.198 5.045 4.881	6.162 5.904 5.657 5.420 4.977 4.570 4.380 4.380 4.023 3.856 5.255 3.120
13153571375991731591	11313315535137571753	1.975 1.794 1.808 1.656 1.735 1.484 1.523 1.551 1.461 1.411 1.372 1.396 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376	1.533 1.530 1.568 1.531 1.4,19 1.374 1.303 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.114 1.153 1.198	1.885 1.768 1.816 1.709 1.764 1.632 1.644 1.674 1.668 1.625 1.556 1.528	1.917 1.800 1.84.9 1.786 1.808 1.716 1.860 1.855 2.019	$\begin{array}{c} 1,927\\ 1,865\\ 1,775\\ 1,778\\ 1,776\\ 1,673\\ 1,575\\ 1,560\\ 1,550\\ 1,550\\ 1,550\\ 1,550\\ 1,550\\ 1,550\\ 1,550\\ 1,368\\ 1,252\\ 1,262\\ 1,368\\ 1,292\\ 1,262\\ 1,200\\ 1,100\\ 1,$
80000000000000000000000000000000000000	020424602648	2.522 2.412 1.986 1.985 1.816 1.560 1.539 1.521 1.200 1.274 1.0067	1.511 1.213 1.243 1.037 1.026	2.463 2.338 1.997 2.043 1.916 1.728 1.682	2.529 2.341 2.083 2.122 2.128	2.457 2.322 1.955 1.846 1.549 1.461 1.222 1.151 1.151 0.958 0.958

the reasons discussed above. It is interesting to note the systematic trends which are observed across this table. The value of the harmonic thermal parameter of both ions decreases as the atomic number of the cation increases and the unit cell becomes larger, although the value of α_F decreases more rapidly than the corresponding value for the cation. The value of the anharmonic thermal parameter, $-\beta_F$, also decreases. Although the ratio of $-\beta_F$ to α_F decreases, it is in no case significantly different from the weighted mean value of 1.04 (±0.07) Å⁻¹.

Table 11. Discrepancy index vo	alues ((%)	
--------------------------------	---------	-----	--

SrF_2	CaF ₂
0.90	1 4.14
1.01	4.14
1.07	3.92
2.21	6.29
	SrF ₂ 0·90 1·01 1·07 2·21

The mean-square vibration amplitude of the ions, $\langle u^2 \rangle$, is proportional to their temperature factor *B* and thus inversely proportional to the harmonic thermal parameter α . Thus the mean-square vibration amplitudes of the ions increase as the atomic number of the cation increases. However, the unit-cell size also increases and it is therefore convenient to consider the relative mean-square vibration amplitude, which is proportional to the ratio B/a^2 given in Table 12. It can be seen that this ratio is essentially constant for the cations but that the ratio for the fluorine ion increases linearly with the atomic number of the cation.

It is interesting to compare the behaviour of the relative mean-square vibration amplitudes in these fluorite structures with that obtained for certain alkali halides. Menz (1968) determined the values of B/a^2 for the ions Li⁺, Na⁺, F⁻ and Cl⁻ from electron diffraction measurements on LiF, LiCl, NaF and NaCl and concluded that the ratio was inversely proportional to the ionic mass. However, the values obtained for fluorine conflicted with this general conclusion and Linkoaho (1969) has more recently calculated B/a^2 values from accurate room temperature X-ray diffraction measurements on the above halides together with KCl, KBr and RbCl. From these more extensive measurements Linkoaho concludes that, apart from a relatively high value for Li⁺, the ratio B/a^2 seems to be constant, independent of the ionic mass. However, he shows that, in every case, the ratio for an individual ion increases when the number of electrons in its neighbours increases and in the case of Cl⁻, for which four values were available the increase was very linear. He also points out that the latter trend is also apparent in the measurements of Menz (1968). There is thus a very striking similarity between the behaviour of the relative mean-square vibration amplitudes in the fluorite and the alkali halide structures.

The accuracy of the SrF₂ measurements was sufficient for a reliable value of the ratio of the nuclear scattering amplitudes to be determined. The resultant values was $b_{\rm Sr}/b_{\rm F} = 1.229 \ (\pm 0.007)$, which gives a value

Table 12. Neutron scattering amplitudes and thermal parameters obtained for CaF₂, SrF₂ and BaF₂

	CaF ₂	SrF_2	BaF_2	
bм	0.488	0.688 (0.013)	0.522 (0.13)	$\times 10^{-12}$ cm
αM	6.30	5.63 (0.011)	4·71 (0·04)	$\times 10^{-12}$ erg. Å ⁻²
α _F	4.58	3.77 (0.06)	3.04 (0.01)	$\times 10^{-12}$ erg. Å ⁻²
$-\beta_{\rm F}$	5.66 (1.16)	3.95 (0.46)	3.06 (0.26)	$\times 10^{-12}$ erg. Å ⁻³
$-\beta_{\rm F}/\alpha_{\rm F}$	1.24 (0.25)	1.05 (0.12)	1.01 (0.09)	Å-1
$\alpha_{\rm M}/\alpha_{\rm F}$	1.38	1.49 (0.03)	1.55 (0.01)	
$B_{\rm M}$	0.507	0.567 (0.011)	0.678 (0.005)	Å2
$B_{\rm F}$	0.697	0.846 (0.013)	1.048 (0.004)	Å2
$B_{\rm M}/a^2$	1.70	1.69 (0.03)	1.76 (0.01)	$\times 10^{-2}$
$B_{\rm F}/a^2$	2.34	2.51 (0.04)	2.73 (0.01)	× 10 ⁻²

for the nuclear scattering amplitude of strontium of $b_{\rm Sr} = 0.688 \ (\pm 0.013) \times 10^{-12}$ cm, assuming a value of $b_{\rm F} = 0.560 \ (\pm 0.010) \times 10^{-12}$ cm. The new value of $b_{\rm Sr}$ is appreciably larger than the previously tabulated values of 0.57×10^{-12} cm (*International Tables for X-ray Crystallography*, 1962) and 0.656×10^{-12} cm (The Neutron Diffraction Commission, 1969), but is in excellent agreement with the value of $0.683(\pm 0.007) \times 10^{-12}$ cm given by Loopstra & Rietveld (1969).

The present measurements give further confirmation of the importance of anharmonic effects for atoms occupying tetrahedral sites in the fluorite structure and it is to be expected that these considerations can be extended to other types of structure. Neutron diffraction measurements on a number of other relatively simple structures are in progress to investigate this further.

References

- Атол, М. (1961). J. Chem. Phys. 35, 1950.
- COOPER, M. J. (1971). Acta Cryst. A27, 148.
- COOPER, M. J. & ROUSE, K. D. (1968). Acta Cryst. A 24, 405.
- COOPER, M. J. & ROUSE, K. D. (1970a). Thermal Neutron Diffraction, ch. 1. Edited by B. T. M. WILLIS. Oxford Univ. Press.

- COOPER, M. J. & ROUSE, K. D. (1970b). Acta Cryst. A26, 214.
- COOPER, M. J., ROUSE, K. D. & WILLIS, B. T. M. (1968). Acta Cryst. A 24, 484.
- DAWSON, B., HURLEY, A. C. & MASLEN, V. W. (1967). Proc. Roy. Soc. A 298, 289.
- DONALDSON, R. E. (1964). Private communication, quoted in *Neutron Cross Sections*, Suppl. No. 2, Vol. 1, BNL 325 (1964); U.S.A.E.C. Publication.
- ELCOMBE, M. M. & PRYOR, A. W. (1970). J. Phys. (C), 3, 492.
- GERLICH, D. (1964). Phys. Rev. 136, A1366.
- HUFFMAN, D. R. & NORWOOD, M. H. (1960). *Phys. Rev.* 117, 709.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- LINKOAHO, M. V. (1969). Acta Cryst. A 25, 450.
- LOOPSTRA, B. O. & RIETVELD, H. M. (1969). Acta Cryst. B25, 787.
- MENZ, W. (1968). Z. Phys. 211, 183.
- POWELL, M. J. D. (1965). Computer J. 7, 303.
- Rouse, K. D., Cooper, M. J., York, E. J. & Chakera, A. (1970). Acta Cryst. A 26, 682.
- The Neutron Diffraction Commission (1969). Acta Cryst. A 25, 391.
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558.

Acta Cryst. (1971). A27, 628

An Improved Absorption Correction Procedure for X-ray Intensity Data from a Poorly Defined Single Crystal

BY A.D. RAE AND M.F. DIX

Department of Physical Chemistry, The University of New South Wales, Kensington, N.S.W. 2033, Australia

(Received 13 April 1971)

A mathematical technique is described which combats the innacuracies in absorption corrections applied to single-crystal X-ray diffraction data due to indefinite location of the crystal faces.

Introduction

The purpose of this paper is to demonstrate the feasibility of correcting errors inherent in the calculation of absorption corrections. Here a method is described for calculating the magnitude of the absorption error associated with the fixing of the planes defining a crystal. The effectiveness of the method is studied by using a least-squares correlation of common reflexions obtained from different data collection geometries. The orientation of the defining planes of a crystal may reasonably be regarded as without error and only the